

SIDDHARTH INSTITUTE OF ENGINEERING &TECHNOLOGY:: PUTTUR ELECTRONICS & COMMUNICATON ENGINEERING

DIGITAL IC APPLICATIONS QUESTION BANK

<u>UNIT –I</u>

CMOS LOGIC AND BIPOLAR LOGIC AND INTERFACING

1)	a) Design a 4-input CMOS AND-OR-INVERTER gate. Discuss its operation with le functional table.	ogic diagram and 5M [L6][CO2]
	b) Describe the operation of CMOS inverter for LOW and HIGH inputs?	5M [L3][CO2]
2)	a) Draw the circuit diagram of basic CMOS gate and explain its operation?	5M [L3][CO2]
	b) Compare CMOS, TTL and ECL logic families.	5M [L5][CO1]
3)	a) Draw the circuit diagram of a two input LS-TTL NAND gate and explain the functional	behavior?
		5M [L3][CO1]
	b) Explain in detail about basic ECL logic circuit.	5M [L2][CO1]
4)	Discuss about low voltage CMOS logic and interfacing.	10M [L4][CO1]
5)	a) Design CMOS transistor circuit for 2-input AND gate. With the help of function table, en	xplain the circuit. 5M [L6][CO2]
	b) Design a CMOS circuit that has the functional behavior $f(Z)=A.(B+C)$.	5M [L6][CO2]
6)	a) Design a 2-input AND gate CMOS circuit. Explain its operation with help of function ta	
,		5M [L6][CO2]
	b) Design CMOS Logic circuit for XOR gate and explain with operational table.	5M [L6][CO2]
7)	a) Design a 4-input CMOS AND-OR-INVERTER gate. Draw the logic diagram and function	
	h) Compare Different logic families	5M [L6][CO2]
0)	b) Compare Different logic families.	5M [L5][CO1]
8)	a) Design a 2-input NAND gate using diode logic and a transistor inverter. Analyze the circ	
	help of transfer characteristics.	5M [L6][C01]
	b) Explain the following terms with reference to TTL gate.	5M [L2][CO1]
0)	i) D.C noise margin ii) Logic levels	h - 1
9)	a) Draw the circuit diagram of basic TTL NAND gate and explain the three parts with the	-
	operation.	5M [L3][C01]
10	b) Explain TTL and CMOS interfacing.	5M [L2][C01]
10) a) State CMOS logic levels.	2M [L2][C01]
	b) Define Fan-in, Fan-out.	2M [L2][C01]
	c) Draw the symbol of NMOS and PMOS transistor.	2M [L2][C01]
	d) Define TTL logic levels and noise margin.	2M [L2][C01]
	e) Define static and dynamic power dissipation.	2M [L2][CO1]

<u>UNIT –II</u>

THE VHDL HARDWARE DESCRIPION LANGUAGE

1) a) Explain the various data types supported by VHDL. Give the necessary examples.	5M [L2][CO3]
b) Explain about VHDL program structure.	5M [L2][CO3]
2) a) Explain about functions and procedures with an examples.	5M [L2][CO3]
b) Explain about libraries and packages.	5M [L2][CO3]
3) a) Discuss about behavioral design element with an example.	5M [L4][CO3]
b) Design the logic circuit and write a data-flow style VHDL program for the follow	ing function.
F (P) = $\sum A,B,C,D$ (1,5,6,7,9,13) + d(4,15).	5M [L6][CO6]
4) Draw and explain in detail about VHDL design flow.	10M [L3][CO3]
5) a) Write about structural design elements with an example.	5M [L2][CO3]
b) Write a VHDL entity and Architecture for the following function. $F(x) = (a + b) (a + b)$	c d) Also draw the
relevant logic diagram.	5M [L2][CO6]
6) Design the logic circuit and write VHDL program for the following functions.	
a) $F(X) = \sum A, B, C, D(0, 2, 5, 7, 8, 10, 13, 15) + d(1, 6, 11).$	5M [L6][CO6]
b) $F(Y) = \prod A, B, C, D (1, 4, 5, 7, 9, 11, 12, 13, 15).$	5M [L6][CO6]
7) Design a logic circuit for 4-bit parallel adder and write the VHDL code in structural style by considering full	
adder as a component.	10M [L6][CO6]
8) Explain in detail different modeling styles of VHDL with suitable examples.	10M [L2][CO3]
9) a) What is the importance of time dimension in VHDL and explain.	5M [L2][CO3]
b) Explain the behavioral design elements of VHDL.	5M [L2][CO3]
10) Write Short notes	
a) Syntax of entity declaration.	2M [L2][CO3]
b) Process statement in VHDL.	2M [L2][CO3]
c) Difference between Signal and Variable.	2M [L2][CO3]
d) Difference between Function and Procedure.	2M [L2][CO3]
e) IEEE Library.	2M [L1][CO3]

<u>UNIT –III</u>

COBINATIONAL LOGIC DESIGN

1. a) Design a 4 to 16 decoder with 74×138 IC's.	5M [L6][CO4]		
b) Write a VHDL program for the above design.	5M [L2][CO6]		
2. a) Design a Full adder with Half adders logic circuit.	5M [L6][CO4]		
b) Write VHDL code for the above design in structural model.	5M [L2][CO3]		
3. a) Explain the operation of standard IC for 3X8 decoder with necessary truth table and internal architecture.			
	5M [L2][CO4]		
b) Write a VHDL code for the above Standard IC	5M [L2][CO6]		
4. a) Discuss about IC 74X148 in detail.	5M [L4][CO4]		
b) Write a VHDL for the above IC.	5M [L2][CO6]		
5. a) With the help of logic diagram explain 74×157 multiplexer.	5M [L2][CO4]		
b) Write a VHDL code for the above IC in data flow style.	5M [L2][CO6]		
6. Design the following functions using PAL and PLA.			
a) $F_1 = \Sigma(0,1,2,5,7,11,13,14) + d(4,8,10)$	5M [L6][CO6]		
b) $F_2 = \Sigma(0,3,5,6)$	5M [L6][CO6]		
7. Design a priority encoder that can handle 32 requests. Use 74×148 and required discrete gates. Provide the			
truth table and explain the operation.	10M [L6][CO4]		
8. a) Write a VHDL code for 4-bit ALU IC 74x181.	5M [L2][CO6]		
b) Draw the structure of a 4-bit comparator and briefly explain about it. Write a structural V	HDL code for it.		
	5M [L3][CO4]		
9. a) Draw the logic symbol of 74 x 85, 4-bit comparator and write a VHDL code for it.	5M[L3][CO4]		
b) Design a 16-bit comparator using 74×85 Ics.	5M [L6][CO4]		
10. Design a 8X8 binary multiplier and write VHDL code for the design.	10M [L6][CO4]		

UNIT -IV

SEQUENTIAL MACHINE DESIGN PRACTICES

1. Write a VHDL code for a serial adder using Mealy type FSM.	10M [L2][CO5]	
2. a) Design a 4-bit Johnson Counter and explain its operation.	5M [L6][CO5]	
b) Write a VHDL code for the above design.	5M [L2][CO6]	
3. Design an 8 bit parallel in and serial out shift register and explain its operation with the help of timing		
waveforms.	10M [L6][CO5]	
4. Draw the standard IC diagram of 74x194 and explain its operation. Write VHDL code for 74X194.		
	10M [L3][CO6]	

5. What is the difference between ring counter and Johnson ring counter? Design a self-correcting 4 bit, 4 state ring counter with a single circulating 0 using 74x194.
10M [L6][CO5]

Design an 8 bit parallel in and parallel out shift register and explain its operation with the help of timing waveforms.
 10M[L6][CO5]

7. a) Design a 4-bit Ring Counter and explain its operation.
b) Write a VHDL code for the above design.
8. Discuss the logic circuits of 74x377 register. Write a VHDL program for the above logic.
9. a) Design a bit LFSR counter using 74x194.List out the sequence assuming that the initial state 111.
5M [L6][CO5]
5M [L6][CO4]

	5M [L6][CO4]
b) Write a VHDL code for the above design.	5M [L2][CO6]
10 a) Draw the 4 bit parallel in parallel out shift register.	2M [L3][CO5]
b) What is LFSR counter?	2M [L2][CO5]
c) Draw the logic diagram of IC 74194.	2M [L3][CO5]
d) What is ring counter?	2M [L2][CO5]
e) What do you mean by self-correcting counter.	2M [L2][CO5]

<u>UNIT –V</u> <u>DESIGN ELEMENTS AND SEQUENTIAL LOGIC DESIGN</u>

1. Write a VHDL code for fixed point to floating point conversion.	10M[L2][CO4]			
2. What is a dual priority encoder? Explain. Write VHDL code for the design.	10M[L2][CO4]			
3. Design a 8-bit barrel shifter using three control inputs. Write a VHDL program for the same in data flow				
style	10M [L6][CO4]			
4. Write a VHDL code for 4 bit comparator circuit. Using this entity write a VHDL code for 16 bit comparator.				
	10M [L2][CO4]			
5. a) Distinguish between latch and flip flop .Show the logic diagram for both. Explain the ope	5. a) Distinguish between latch and flip flop .Show the logic diagram for both. Explain the operation with the			
help of function table.	5M [L4][CO5]			
b) Write a VHDL code for a D-flip flop in behavioral model.	5M [L2][CO6]			
6. a) Design a synchronous 4-bit up counter.	5M [L6][CO5]			
b) Write a VHDL code for the above design.	5M [L2][CO6]			
7. a) Distinguish between the synchronous and asynchronous counters	5M [L4][CO5]			
b) What are the impediments to synchronous design?	5M [L2][CO5]			
8. What is PLD's? Explain in detail with help of neat sketches.	10M [L2][CO4]			
9. Design an 8 bit serial in and serial out shift register and write a VHDL code for it.	10M [L6][CO5]			
10. a) Design an 8 bit serial in and parallel out shift register.	5M [L6][CO5]			
b) Design a decade counter and explain its operation with necessary waveforms.	5M [L6][CO5]			